Chem. Ber. 102, 3947-3949 (1969)

Anton Rieker und Paul Niederer

Notiz zur Struktur eines "2.4.6-Tri-tert.-butyl-phenylhydrazins"

Aus dem Chemischen Institut der Universität Tübingen (Eingegangen am 20. Mai 1969)

Nach $Condon^{1)}$ entsteht 2.4.6-Tri-tert.-butyl-phenylhydrazin (2) (Öl, pK_A^{30} 3.66 in 50proz. Äthanol) durch Diazotierung von 2.4.6-Tri-tert.-butyl-anilin (1) in wäßrig-salzsaurem Eisessig mit NaNO₂ und anschließende Reduktion des intermediären Diazoniumsalzes mit wäßriger Natriumhydrogensulfit-Lösung. Die Reinigung erfolgte über das Hydrochlorid (Schmp. 208–210°, Zers.; befriedigende Elementaranalyse; keine Ausbeuteangaben).

Im Rahmen unserer Untersuchungen zur Oxydation sterisch gehinderter Amine²⁾ wiederholten wir den oben genannten Versuch und erhielten neben ca. 20% 2.4.6-Tri-tert.-butyl-chlorbenzol (5), wenig 2.4.6-Tri-tert.-butyl-phenylacetat (6), 4-Nitro-2.6-di-tert.-butyl-anilin (7) und weiteren unbekannten Substanzen 10-12% (bezogen auf die richtige Struktur, s. unten) des erwähnten Hydrochlorids vom Zers.-P. $208-210^\circ$ (aus Acetonitril $213-215^\circ$).

Die Elementaranalyse ergibt bis auf den Stickstoff- und Chlor-Gehalt für 3 ausreichende Werte, auch zeigt das IR-Spektrum (KBr) mehrere NH- bzw. Ammonium-Banden zwischen 3 und $5.5\,\mu$. Im NMR-Spektrum (CDCl₃) werden jedoch zwei tert.-Butylbanden gleicher Intensität (τ 8.42/8.68) beobachtet. Damit scheiden die Strukturen 3 für das Hydrochlorid und 2 für die Base selbst aus, und die aus dem p K_A -Wert gezogenen Schlüsse zur Basizität von 2^{3}) sind hinfällig.

Laut NMR-Spektrum liegt ein 1.2.4-trisubstituiertes Benzol (mit 2 tert.-Butyl-Resten) vor (ABC-Spektrum der Ringprotonen: τ_A 2.13, τ_B 2.68, τ_C 2.45 ($J_{AB(ortho)} = 8.0$, $J_{BC(meta)} = 2$, $J_{AC(para)} \simeq 0$ Hz). Im Massenspektrum beobachtet man den Peak höchster Masse bei m/e 205. Da bei Hydrochloriden eine Fragmentierung von HCl zu erwarten ist, entspricht dieser Peak offenbar dem Molekül-Ion der Base, die sich damit als Di-tert.-butyl-anilin er-

¹⁾ F. E. Condon und G. L. Mayers, J. org. Chemistry 30, 3946 (1965).

²⁾ Vgl. z. B. E. Müller, A. Rieker und K. Scheffler, Liebigs Ann. Chem. 645, 92 (1961); A. Rieker und H. Kessler, Z. Naturforsch. 21 b, 940 (1966).

³⁾ F. E. Condon, J. Amer. chem. Soc. 87, 4494 (1965).

weist. Aufgrund der chemischen Verschiebungen und der Kopplungskonstanten der Ringprotonen im Hydrochlorid sollte es sich um das 2.4-Di-tert.-butyl-anilin (8) (Hydrochlorid: 4) handeln.

Tatsächlich stimmen IR- und NMR-Spektrum sowie Schmp. und Elementaranalyse des Hydrochlorids mit den entsprechenden Werten einer aus 3.5-Di-tert.-butyl-toluol⁴) bzw. aus 3.5-Di-tert.-butyl-brombenzol⁵) hergestellten authentischen Verbindung 4 überein. Auch weisen die daraus gewonnenen Acetamide übereinstimmende IR-Spektren auf. Schließlich stimmt der von *Condon* angegebene p K_A -Wert mit dem für 8 ermittelten (p K_A^{25} 3.80, 50proz. Äthanol⁶) gut überein.

Inzwischen wurde authentisches 2.4.6-Tri-tert.-butyl-phenylhydrazin (2) von *Rigaudy* et al.⁷⁾ auf anderem Wege synthetisiert (Schmp. 160–161°; Subl.-P. von 3 ca. 180°). Diese Autoren weisen ebenfalls auf die Unterschiede zwischen ihrem Produkt und dem von *Condon* beschriebenen hin.

Unter den eingangs genannten Reaktionsbedingungen bildet sich also kein Hydrazin $2^{8)}$. Dies dürfte darauf beruhen, daß das intermediäre Diazonium-Ion hierbei schneller zerfällt, als es der Reduktion zugänglich ist. Tatsächlich stellt der bei der Nitrosierung von 1 mit NaNO₂ in salzsaurem Eisessig bei $0-5^{\circ}$ zunächst ausfallende gelbe Niederschlag nicht das Diazoniumsalz von 1 dar, sondern ein Substanzgemisch, das dem nach der Einwirkung von Natriumhydrogensulfit erhaltenen schon teilweise entspricht.

Herrn Doz. Dr. W. Rundel und der Deutschen Forschungsgemeinschaft sind wir zu Dank verpflichtet.

Beschreibung der Versuche

2.4-Di-tert.-butyl-anilin-hydrochlorid (4): 5.0 g (19 mMol) 2.4.6-Tri-tert.-butyl-anilin (1)6,9) in 50 ccm Eisessig und 13 ccm konz. Salzsäure werden bei 0° mit 1.3 g NaNO2 in 7 ccm Wasser diazotiert, wobei sich ein gelber Niederschlag bildet. Nach Zugabe einer frisch bereiteten Natriumhydrogensulfit-Lösung (analog zu l. c.1)) wird 7 Stdn. unter Rückfluß erhitzt; der gelbe Niederschlag verschwindet. Nach 12stdg. Stehenlassen bei 20° hat sich eine mit Kristallen durchsetzte Ölschicht gebildet. Die Kristalle erweisen sich nach Absaugen, Waschen mit Eisessig und Umlösen aus Methanol als 2.4.6-Tri-tert.-butyl-chlorbenzol (5) (1.0 g = 19%, Schmp. 156–158°10)). Die vereinigten Filtrate werden mit 2n NaOH alkalisiert, die organischen Bestandteile ausgeäthert und nach Verdampfen des Äthers das verbleibende Öl mit 3.5 m methanolischer HCl-Lösung im Überschuß versetzt. Nach Abziehen des Solvens im Rotationsverdampfer hinterbleibt ein braunrotes Öl, aus dem durch Digerieren mit Petroläther (50–70°) 450–544 mg (10–12%) 4 anfallen; Zers.-P. 213–215° (aus Acetonitril).

C₁₄H₂₄ClN (241.8) Ber. C 69.54 H 10.01 Cl 14.66 N 5.79 Gef. C 69.06 H 9.93 Cl 14.62 N 5.73 Ber. (für 3) C 69.09 H 10.63 Cl 11.33 N 8.95

⁴⁾ J. Burgers, W. van Hartingsveldt, J. van Keulen, P. E. Verkade, H. Visser und B. M. Wepster, Recueil Trav. chim. Pays-Bas 75, 1327 (1956).

⁵⁾ W. Rundel, Chem. Ber. 96, 636 (1963).

J. Burgers, M. A. Hoefnagel, P. E. Verkade, H. Visser und B. M. Wepster, Recueil Trav. chim. Pays-Bas 77, 491 (1958).

⁷⁾ J. Rigaudy und J.-C. Vernieres, Compt. rend. hebd. Acad. Sci. [Paris] C 266, 828 (1968).

⁸⁾ Oder es zersetzt sich unter den angewandten Bedingungen.

⁹⁾ H. Kessler und A. Rieker, Liebigs Ann. Chem. 708, 57 (1967).

¹⁰⁾ J. Rigaudy und J.-C. Vernieres, Compt. rend. hebd. Acad. Sci. [Paris] C 261, 5516 (1965).

Aus 4 wird mit 2n NaOH 8 freigesetzt und dieses mit Acetanhydrid (12 Stdn. bei 25°) in Essigsäure-[2.4-di-tert.-butyl-anilid] (9) übergeführt, Schmp. 153° (Lit. 4,5): 153.5–154.5°).

C₁₆H₂₅NO (247.4) Ber. C 77.68 H 10.19 N 5.66 Gef. C 77.76 H 10.24 N 5.57 Mol.-Gew. 247 (massenspektrometrisch)

Die Mutterlauge von der Fällung des Hydrochlorids 4 wird DS-chromatographisch (Kieselgel HF_{254/366} Merck; Benzol/Petroläther/Aceton 40:60:1 v/v/v als Fließmittel) aufgetrennt. Es werden isoliert: 20 mg (0.4%) 5; 89 mg (1.5%) 6^{10} (Schmp. 99°); 41-110 mg (1-2.5%) 7^{10} (Schmp. 256°), das sich gelegentlich auch direkt aus dem Reaktionsgemisch ausscheidet; vier weitere Verbindungen in kleiner Menge wurden nicht identifiziert.

2.4.6-Tri-tert.-butyl-phenylacetat (6) erhält man auch in 46—50proz. Ausb., wenn man 5.4 g 2.4.6-Tri-tert.-butyl-phenol in 20 ccm Acetanhydrid + 2 Tropfen konz. Schwefelsäure 2 Stdn. unter Rückfluß erhitzt; Schmp. $101-102^{\circ}$ (nach Sublimation).

[196/69]